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Talk’s Overview

● Recap & Overview of Imitation Learning (Motivation)
● Problem under consideration (Behavior Cloning)
● Related Works
● Proposed Approach
● Experimental Analysis
● Discussion, Limitations, Future Work
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What we have seen so far in RL!

Week-06

● Model-free reinforcement learning
○ TRPO
○ PPO
○ DDPG
○ SAC

● Model-based reinforcement learning
○ Dreamer (World Models)

● Batch (Offline) RL
○ BCQ
○ CQL

Week-07

[Source: Open AI Spinning 

Up]
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What’s next !
● Imitation Learning (IL)

(In a nutshell)
Provided: Expert Demonstrations or 
Demonstrator

Goal: Learn a policy that mimics the 
behaviour of demonstrator

● But why do we need IL ?
○ Safety Concerns
○ Learning by Interaction is very costly in time 

in real world
○ Learn societal norms
○ Easier to provide demonstrations than 

formulate reward function

Demonstrations State/Action pairs Policy Learning

Image sources: 
https://intellabs.github.io/coach/components/agents/ind
ex.html
https://www.cs.cmu.edu/~sross1/publications/ross_phdt
hesis.pdf

https://intellabs.github.io/coach/components/agents/index.html
https://intellabs.github.io/coach/components/agents/index.html
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Imitation Learning (Ctd.)

Autonomous Driving

ALVINN [Dean Pomerleau et al., 1989-1999] An Application of Reinforcement Learning to Aerobatic Helicopter Flight 
Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng, NIPS 2006

Helicopter Acrobatics

http://www.youtube.com/watch?v=2KMAAmkz9go&t=213
http://www.youtube.com/watch?v=0JL04JJjocc
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Problem Formulation & Overview
More formally:
Given:

● State space , Action space
● Transition model P(s’|s,u)
● No Reward function R
● Set of one or more teacher’s demonstrations (o0, u0, o1, u1, …)

   (actions drawn from teacher policy 𝝅*)

Goal:
❖ Behavioral Cloning

➢ Can we directly learn expert’s policy using supervised learning?
❖ Inverse Optimal Control / RL

➢ Can we recover R and then recover 𝝅* ?
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Problem Formulation & Overview (Ctd.)
More formally:
Given:

● State space , Action space
● Transition model P(s’|s,u)
● No Reward function R
● Set of one or more teacher’s demonstrations (o0, u0, o1, u1, …)

   (actions drawn from teacher policy 𝝅*)

Goal:
❖ Behavioral Cloning

➢ Can we directly learn expert’s policy using supervised learning?
❖ Inverse Optimal Control / RL

➢ Can we recover R and then recover 𝝅* ?

Topic of Today’s paper
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Behavioral Cloning

Formulate problem as a standard supervised learning 
problem to learn        

● Fix learning algorithm class (e.g., DNN, SVM, 
Decision Trees etc.)

● Estimate a policy from demonstration set ξ

Given:
● State space , Action space 
● Transition model P(s’|s,u)
● No Reward function R
● Set of one or more teacher’s demonstrations ξ = {(o0, u0), (o1, u1), …}

   (actions drawn from teacher policy 𝝅*)

Set of export 
demonstrations

Minimize the loss between 
learned policy and expert’s policy
(loss can be KL divergence, 
p-norms, etc.)

Optimization Objective

https://web.stanford.edu/class/cs237b/pdfs/lecture/lecture_10111213.pdf
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Related Works
❖ Behavioral Cloning:

○ Some prior works used low-dimensional representations of environment states [1,2,3,4]
Issue: Hard to extract environment state which makes learning policies directly from raw 
pixels desirable and it has been successful for tasks such as driving [5,6,7], drones [8]

○ Kinesthetic teaching (human operator guides robot by force on its body for demonstrations) [9,10]  
Issues: - unintuitive, visual artifacts, low quality

○ Previous Teleoperation systems for robotic manipulation (da Vinci Surgical System)[11]
Pros: High quality demonstrations without any visual obstructions
Issues: Expensive, Specialized

Image sources: https://tinyurl.com/3ycj87zp
https://www.roboticstoday.com/devices/da-vinci-s-hd-surgical-system

https://tinyurl.com/3ycj87zp


CS391R: Robot Learning (Fall 2022) 10

Related Works (Ctd.)
❖ Demonstrations from Trajectory Optimization Approaches [12,13,14,15]

Issues: Time-consuming even for experts

❖ Reinforcement Learning for skill acquisition:
Pros: Recent success in learning policies from pixels to actions [16,17,18]
Issues: > Impractical amount of exploration needed for real robots

(Example: Atari results would have taken 40 days of real-time experience)
> Hard to specify reward functions in practice.

Ref [18] & Image source  : S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies,” 
Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40, 2016.
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Proposed Approach 
Hardware:
❖ Use Vive VR System, a consumer-grade 

VR device for teleoperation
Pros: Very cost-effective $600

❖ Provides headset + 2 hand-controllers 
(each having 6DoF; provides sub-millimeter 
pose tracking at 90 Hz in room-scale 
tracking area)

❖ Visual Sensing: Primesense Carmine 1.09
Low cost 3D camera mounted on robot’s 
head and captures RGB-D images at 30 Hz

Visual Reality Teleoperation in action

Teleoperation control
Visual sensing
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Proposed Approach 
Visual Interface:
❖ Use RGB-D images to render coloured point cloud, 

processed to remove gaps between points as 
physical objects in virtual environment.

❖ Overlay 3D visualizations on the point cloud to 
assist teleoperation process.

Control Interface:
❖ Use Vive hand-controller’s pose as robot’s gripper 

target pose.
❖ Natural control mechanism to provide 

demonstrations.
❖ Intuitive way to apply force control 

(if robot’s gripper is hindered during contact, then 
| target pose - gripper pose | ∝ force exerted by 
gripper)
Benefit: Allow human operator to dynamically vary 
force

http://www.youtube.com/watch?v=QkNNlfYG7kg&t=83
http://www.youtube.com/watch?v=QkNNlfYG7kg&t=83
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Network Architecture

❖ Inputs:
➢

It : Current RGB image of dimensions (160 x 120 x 3)
Dt: Current Depth image (dim: 160 x 120)
p(t-4:5): three points on end-effector of right arm to capture pose for last 5 steps (# of dim : 45)

❖ Outputs:
➢ Angular velocity (# of dim: 3)
➢ Linear Velocity (# of dim: 3)
➢ Gripper open/close state 𝝐 {0,1) (for tasks involving grasping)

(1) Vision network: 
extract spatial features

(3) Control output 
network

(2)
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Loss Functions
❖ Behavioral cloning loss : 
❖ Directional alignment loss :
❖ Sigmoid cross-entropy loss :

(for gripper open/close prediction)
❖ Auxiliary loss :

➢ Extra source of supervision; making learning goal-oriented; auxiliary labels can be inferred from 
demonstrations.

➢ Examples of auxiliary tasks:
■ Predict current gripper pose
■ Predict final gripper pose
■ Predict current object position (for pushing, grasp-and-place, grasp-drop-push tasks)

❖ Overall loss function:

Network Training: Use Stochastic Gradient Descent to train policy using random batches sampled 
from demonstrations
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Experiments

❖ Evaluations done on suite of 10 challenging manipulation tasks
i. Reach a bottle, grasp a tool, push a toy block, attach wheels to a toy plane etc., to name a 

few.
❖ Evaluation criteria/goals: 

i. Can we use our system to train, with little tuning, successful deep visuomotor policies for a 
range of challenging manipulation tasks?

ii. What is the sample complexity for learning an example manipulation task using our system?

iii. Does our auxiliary prediction loss improve data efficiency for learning real-world robotic 
manipulation?
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Experiments (Ctd.)

❖ Can we use our system to train, with little tuning, successful deep visuomotor policies for a 
range of challenging manipulation tasks?

Success rates of learned policies averaged across all initial states during test time 
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❖ The results suggest that a simple imitation learning can train successful control policies for range 
of real-world manipulation tasks while achieving sample efficiency and good performance

❖ Each policy is trained with same hyperparameter settings and NN architecture and uses <30 min 
of human demonstrations as training data.
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Experiments (Ctd.)

❖ Moreover, paper mentions the learned policies were able to complete sequence of maneuvers in 
long running tasks which shows that policies learned how to transition from one skill to another.
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Experiments (Ctd.)

❖ What is the sample complexity for learning an example manipulation task using our system?

❖ Only ~5 minutes of human demonstrations was needed to achieve 50% success for the nail task
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Experiments (Ctd.)

❖ Does our auxiliary prediction loss improve data efficiency for learning real-world robotic 
manipulation?

❖ Observation: Auxiliary losses empirically improves data efficiency
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Learned Policy Visualizations

http://www.youtube.com/watch?v=QkNNlfYG7kg&t=142
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Critique / Limitations / Open Issues 
❖ Expert demonstrations will not be sampled uniformly across the entire state space.

❖ Distributional mismatch between training and testing policies due to covariance shift
- which can be chaotic !

Image sources: https://tinyurl.com/5xeda32m
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Critique / Limitations / Open Issues (Ctd.) 
❖ What happens in case expert exhibits multi-modal behaviour?

❖ For some tasks, humans are not good at providing actions which can lead to suboptimal policy 
learning
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Future Directions
❖ Can we learn good policies from demonstrations provided in videos?

➢ Petr'ik, V., Tapaswi, M., Laptev, I., & Sivic, J. (2020). Learning Object Manipulation Skills via 
Approximate State Estimation from Real Videos. CoRL.

❖ Can we train a robot while only using low-level controllers that resembles robot?
➢ Kim, H., Ohmura, Y., Nagakubo, A., & Kuniyoshi, Y. (2022). Training Robots without Robots: 

Deep Imitation Learning for Master-to-Robot Policy Transfer. ArXiv, abs/2202.09574.

❖ Can we use imitation learning to learn vision-based manipulation policies on new novel tasks?
➢ Jang, E., Irpan, A., Khansari, M., Kappler, D., Ebert, F., Lynch, C., Levine, S., & Finn, C. 

(2021). BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning. CoRL.
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Extended Readings
❖ Learning from a single demonstration

➢ Finn, C., Yu, T., Zhang, T., Abbeel, P., & Levine, S. (2017). One-Shot Visual Imitation Learning 
via Meta-Learning. CoRL.

❖ Liu, Y., Gupta, A., Abbeel, P., & Levine, S. (2018, May). Imitation from observation: Learning to 
imitate behaviors from raw video via context translation. In 2018 IEEE International Conference on 
Robotics and Automation (ICRA) (pp. 1118-1125). IEEE.

❖ Finn, C., Yu, T., Zhang, T., Abbeel, P., & Levine, S. (2017, October). One-shot visual imitation 
learning via meta-learning. In Conference on robot learning (pp. 357-368). PMLR.

❖ Suomalainen, M., Karayiannidis, Y., & Kyrki, V. (2022). A Survey of Robot Manipulation in Contact. 
Robotics Auton. Syst., 156, 104224.

❖ Torabi, F., Warnell, G., & Stone, P. (2018). Generative adversarial imitation from observation. arXiv 
preprint arXiv:1807.06158.
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Summary

❖ Can we use consumer-grade VR device to teleoperate robots for complex manipulation tasks?

❖ Control interfaces exist for driving cars/drones, but what about manipulation tasks in robots?

Kinesthetic teaching introduces visual artifacts in vision based tasks? 

❖ - Developed cost-effective, consumer-grade teleoperation control system

- Single deep neural network architecture able to perform well on a suite of 10 complex manipulation tasks

- Auxiliary loss besides behavioral cloning loss introduces self-supervision which provides sample efficiency

❖ The key takeaways from this paper was that it is easy to use commercial-grade VR devices to collect high-quality robot 

manipulation demonstrations suitable for visuomotor learning. Moreover, imitation learning can be surprisingly effective 

in learning deep policies that map pixel values to action only using small amount of data.
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Questions?
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